Производной функции f (x) в точке х0 называется предел (если он существует) отношения приращения функции в точке х0 к приращению аргумента Δх, если прирост аргумента стремится к нулю и обозначается f ‘(x0). Действие нахождения производной функции называется дифференцированием.

Производная функции имеет такой физический смысл: производная функции в заданной точке — скорость изменения функции в заданной точке.

Геометрический смысл производной. Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Физический смысл производной.Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Понятие дифференциала, его свойства. Правила дифференцирования. Примеры.

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Дифференциал обладает свойствами, аналогичными свойствам производной:

1) вынесение постоянного множителя за знак производной

4) производная частного двух функций (производная дроби)

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

Например: Найти производную функции

Решение:Воспользуемся правилом вынесения множителя за знак производной:

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы, воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Формулы дифференцирования. Применение дифференциала в приближенных вычислениях. Примеры.

Применение дифференциала в приближенных вычислениях позволяет использовать дифференциал для приближенных вычислений значений функции.

С помощью дифференциала вычислить приближенно

Для вычисления данного значения применим формулу из теории

Введем в рассмотрение функцию а заданную величину представим в виде

тогда Вычислим

Подставляя все в формулу, окончательно получим

Ответ:

16. Правило Лопиталя для раскрытия неопределенностей вида 0/0 Или ∞/∞. Примеры.

1)

2)

17. Возрастание и убывание функции. Экстремум функции. Алгоритм исследования функции на монотонность и экстремум. Примеры.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, большему значению аргумента соответствует большее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, большему значению аргумента соответствует меньшее значение функции, и её график идёт «сверху вниз». Наша убывает на интервалах убывает на интервалах .

ЭкстремумыТочку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.

Чтобы исследовать функцию на монотонность, воспользуйтесь следующей схеме:

— Найдите производную функции и область определения производной;

— Найдите нули производной, т.е. значение аргумента, при которых производная равна нулю;

— На числовом лучи отметьте общую часть области определения функции и области определения ее производной, а на ней — нули производной;

— Определите знаки производной на каждом из полученных промежутков;

— По знакам производной определите, на которых промежутках функция возрастает, а на каких спадает;

— Запишите соответствующие промежутки через точку с запятой.

Алгоритм исследования непрерывной функции y = f(x) на монотонность и экстремумы:

2) Найти стационарные (f ′(x) = 0) и критические (f ′(x) не существует) точки функции y = f(x).

3) Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.

4) Сделать выводы о монотонности функции и ее точках экстремума.

18. Выпуклость функции. Точки перегиба. Алгоритм исследования функции на выпуклость (Вогнутость) Примеры.

Дифференцируемая функция называется выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.

Точка формула называется точкой перегиба графика функции y=f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки формула, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство ( ), то график функции имеет выпуклость направленную вниз (вверх) на Х.

Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Пример: Выяснить промежутки, на которых график функцииВыяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз. имеет выпуклость направленную вверх и выпуклость направленную вниз.

Решение: Областью определения этой функции является все множество действительных чисел.

Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно. Следовательно, функция выпуклая вниз на интервале формула и выпуклая вверх на интервале формула.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

Задание. Найти асимптоты графика функции

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

20) Общая схема исследования функции и построение графика. Пример.

b. Найти точки пересечения графика функции с осями координат.

2. Провести исследование функции с помощью первой производной, то есть найти точки экстремума функции и интервалы возрастания и убывания.

3. Исследовать функцию с помощью производной второго порядка, то есть найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

4. Найти асимптоты графика функции: а) вертикальные, b) наклонные.

5. На основании проведенного исследования построить график функции.

Заметим, что перед построением графика полезно установить, не является ли данная функция четной или нечетной.

Вспомним, что функция называется четной, если при изменении знака аргумента значение функции не меняется: f(-x) = f(x) и функция называется нечетной, если f(-x) = -f(x).

В этом случае достаточно исследовать функцию и построить её график при положительных значениях аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy, а для нечетной относительно начала координат.

Примеры. Исследовать функции и построить их графики.

.

Область определения функции D(у)= (–∞; +∞). Точек разрыва нет.

Функция нечетная, следовательно, можно исследовать ее только на промежутке [0, +∞).

21) Первообразная функция. Неопределенный интеграл. Свойства неопределенного интеграла. Примеры.



Восстановить аналитическую в окрестности точки функцию


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать